NOAA Technical Memorandum ERL WPL-161

Series analyzod

A REFRACTIVE-INDEX STRUCTURE PARAMETER PROFILING SYSTEM
G. R. Ochs
J. J. Wilson
S. Abbott

Wave Propagation Laboratory

Boulder, Colorado
February 1989
G. R. Ochs
J. J. Wilson
S. Abbott

Partial support for this project was provided by the Atmospheric Science Laboratory, White Sands Missile Range, NM, under MIPR No. ASL 86-8004.

Wave Propagation Laboratory
Boulder, Colorado
February 1989

UNITED STATES DEPARTMENT OF COMMERCE

Robert A. Mosbacher Secretary

NATIONAL OCEANIC AND		Environmental Res
ATMOSPHERIC ADMINISTRAT	ON	LI我aboratories
William E. Evans		Joseph 0. Fletcher
Under Secretary for Oceans and Atmosphere/Administra		JUN Diregorig89
		V.O.A.A. Dept of Commerce

NOTICE

Mention of a commercial company or product does not constitute an endorsement by NOAA Environmental Research Laboratories. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

CONTENTS

ABSTRACT

1. INTRODUCTION 1
2. DESCRIPTION OF THE SYSTEM 1
3. OPERATING PROCEDURE 7
4. REFERENCES 9
APPENDIX A: Derivation of Calibration 9
APPENDIX B: Circuit Diagrams, Alignment, and Layout 14

A REFRACTIVE-INDEX STRUCTURE PARAMETER PROFILING SYSTEM
Gerard R. Ochs, James J. Wilson, and Scott Abbott

Abstract

We describe an instrument that measures the refractive-index structure parameter over three segments of optical paths from 300 to 600 meters long.

1. INTRODUCTION

The line-averaged refractive-index structure parameter $C_{n}{ }^{2}$ can be measured conveniently by observing the irradiance fluctuations of an incoherent light source with a receiver, where both the transmitter and receiver apertures are the same diameter and large compared to a Fresnel zone. ${ }^{1}$ The measurement is most sensitive to $C_{n}{ }^{2}$ in the center of the path, tapering to zero weight at the ends of the path. The incoherent apertures form broad spatial filters that have a peak response to refractiveindex irregularities having a spatial wavelength slightly larger than the aperture diameter. A number of instruments have been designed and built that utilize this principle to obtain a pathaveraged measure of $\mathrm{C}_{\mathrm{n}}{ }^{2}$.
To profile $C_{n}{ }^{2}$ along the light path, the weighting function can be shifted from the center of the path by using different diameter transmitters and receivers ${ }^{2}$, and by taking the difference of two transmitting or two receiving aperture signals. To avoid the effects of scintillation saturation, however, each individual aperture must be sufficiently large ${ }^{1}$, which restricts the filter complexity for an instrument of practical size. With these factors in mind, we have developed a compact profiling instrument that measures $\mathrm{C}_{\mathrm{n}}{ }^{2}$ on three segments of an optical path between three-element transmitters and receivers.

2.DESCRIPTION OF THE SYSTEM

A brief overall view of the system is given here. The basis for the circuit calculation of $\mathrm{C}_{\mathrm{n}}{ }^{2}$ is contained in Appendix A and the detailed circuit diagrams and calibration procedures are contained in Appendix B.

The transmitter and receiver are shown in Figs. 1 and 2, and a block diagram of the profiling system is shown in Fig. 3 . Transmitters $T_{1}\left(14.6-\mathrm{cm}\right.$ dia), and T_{2} and T_{3} (both 4.4-cm dia) irradiate the receivers R_{1}, R_{2} (both $4.4-\mathrm{cm}$ dia), and R_{3} (14.6-cm dia) with pulse-coded transmissions. All transmitters irradiate all receivers. The signals, which fluctuate in amplitude from refractive-index irregularities crossing the optical path, are preamplified and their long-term mean amplitudes are held constant by an automatic gain control (AGC). Gelatin optical filters are employed to limit the receiver optical bandwidth. However some background light is present and must be removed to

Fig. 3. Block diagram of system
prevent error in the log-intensity signal measurement. This background is removed by the baseline circuits which subtract the mean signal present between signal pulses from the pulse stream. A sync signal is developed from the pulse signals received by R_{3}. The decoding system uses this signal to time the sampling of the amplitude of each transmitter pulse. The sample and hold circuits then maintain the signal level between pulses and form a continuous fluctuating signal, which is the envelope of the amplitude fluctuations of the stream of pulses from each transmitter. We take the logarithm of these signals and then combine them in the following way.

$$
\begin{aligned}
& \mathrm{A}_{0}=\text { path } \mathrm{T}_{3} \mathrm{R}_{3}-\text { path } \mathrm{T}_{2} \mathrm{R}_{3} \\
& \mathrm{~B}_{0}=\text { path } \mathrm{T}_{1} \mathrm{R}_{3} \\
& \mathrm{C}_{0}=\text { path } \mathrm{T}_{1} \mathrm{R}_{2}-\text { path } \mathrm{T}_{1} \mathrm{R}_{1}
\end{aligned}
$$

The signals are then bandpass filtered to improve the signal-tonoise and also to subtract the mean of the signal. The logarithm of the root-mean-square (RMS) of these signals is taken in the following stages. Digital pots on the panel control the gain of A_{0}, B_{0}, and C_{0} to take into account path length, receivertransmitter aperture diameter ratios, and RMS to mean square conversion.

Some other auxiliary circuits are present in the system. A signal strength indication is picked off from the sync signal before it is completely limited, since this signal, which is taken from the $15-\mathrm{cm}$ aperture, does not have AGC. A calibration system that generates biased square waves of known log variance is built into the unit. This signal can be injected just after the preamps to check the operation and calibration of the circuits from this point.

The outputs A, B and C, representing, respectively, measurements of C_{n}^{2} (in meters ${ }^{-2 / 3}$) in approximately the first third of the path from the transmitter, the middle third, and the last third nearest the receiver, are related to the output voltage V as follows.

$$
c_{n}^{2}=10^{(V-14)}
$$

The weighting functions obtained by using these outputs directly are shown by the dashed curves in Fig. 4. Somewhat sharper weighting functions can be obtained by a linear combination and renormalizing of the A, B and C outputs having these weighting functions. If A, B, and C are combined to form new outputs

$$
\begin{aligned}
& \mathrm{Al}=(B-.1 A) / .9 \\
& \mathrm{Bl}=(B-.3(A+C)) / .6 \\
& C 1=(C-.1 A) / .9
\end{aligned}
$$

ig. 4. Weighting functions for the three $C_{n}{ }^{2}$ measurements. The transmitter is on the left. The dashed curves are the weights obtained using outputs A, B, and C directly from the instrument. The solid curves show the weights obtained by linear combination of outputs A, B, and C, as described in the text.
the resulting weighting functions are the solid curves in Fig. 4. The sharper weighting functions carry with them a signal-to-noise penalty but it is acceptable in practice.

3.OPERATING PROCEDURE

The transmitter and receiver should be mounted on solid, vibration-free mounts. A cover with a window is useful for weather protection and prevention of vibration due to wind. While window glass is satisfactory, Plexiglas is recommended as it has slightly greater transparency at $0.94 \mu \mathrm{~m}$. It is also necessary to position the path so that sunlight doesn't shine directly into the optics.

The transmitter and receiver pointing accuracy should be better than 2 mrad so that the transmitting apertures appear uniformly illuminated and the receivers have uniform gain across their apertures. This is easy to do as long as the sighting telescopes are properly aligned. All of the optics including the telescopes have been aligned originally by using an infrared collimator. The receiver and transmitter alignment can be checked out in the field on operational paths by observing the received signal. For the transmitter, of course, this requires a communication link between the transmitter and receiver.

The system is optimized for path lengths of 400 to 500 m . It will operate with slightly reduced accuracy and dynamic range over 300 to 600 m . Shorter than optimum paths increase the minimum $C_{n}{ }^{2}$ while longer paths reduce the maximum readable $c_{n}{ }^{2}$.
The digital pots on the panel calibrate the system for a particular path length. The settings versus path length are listed in Table I.

Path	Channel	Channel	Path	Channel	Channel
Length	A and C	B	Length	A and C	C
Meters			Meters		
200	164	61	610	554	350
210	177	68	620	560	356
220	189	75	630	566	362
230	202	83	640	572	368
240	214	90	650	578	374
250	226	98	660	584	380
260	238	105	670	589	386
270	250	113	680	595	391
280	262	120	690	600	397
290	274	128	700	606	402
300	285	135	710	611	408
310	296	143	720	616	413
320	307	150	730	621	419
330	318	158	740	626	424
340	329	165	750	631	429
350	340	173	760	636	434
360	350	180	770	640	439
370	360	188	780	645	444
380	370	195	790	649	449
390	380	202	800	654	454
400	390	210	810	658	459
410	399	217	820	662	464
420	408	224	830	666	469
430	417	231	840	670	473
440	426	238	850	674	478
450	435	245	860	678	483
460	444	252	870	682	487
470	452	259	880	686	492
480	460	266	890	690	496
490	468	273	900	693	500
500	476	280	910	697	505
510	484	287	920	700	509
520	492	293	930	704	513
530	499	300	940	707	517
540	506	306	950	711	522
550	514	313	960	714	526
560	521	319	970	717	530
570	528	326	980	720	534
580	534	332	990	723	538
590	541	338	1000	726	542
600	547	344			

The output time constant, which varies somewhat with signal level, is approximately l sec. Since the outputs are logarithmic, $\mathrm{C}_{\mathrm{n}} 2$ should be computed, say from l-sec samples, and these values used to obtain longer term averages.

The receiving system can be checked with the internal calibrator. To check, set the CALIBRATE-RUN switch to CALIBRATE. The MODULATION ON-OFF switch on the calibrator board should be in the ON position. Set all three calibration pots to 595. Then hold the CALIBRATE TEST switch first up and then down, and observe the A, B and C outputs. For the internal test signal settings suggested in the appendix, all outputs for either the up or down switch position should read 2.0 volts $\left(C_{n}{ }^{2}=1 \times 10(-12)\right.$.

An additional test of the circuit noise can be made by repeating this test with the MODULATION ON-OFF switch in the off position. In this case, the minimum possible $C_{n}{ }^{2}$ reading for the path length calibration set in, will be read. For example, with the calibration settings for a $500-\mathrm{m}$ path, the A, B and C outputs should be less than -3 volts.

The three transmitter LEDs should be set to approximately 200 ma average current as indicated on the meter. When set up on an actual path, the intensity of the three sets of pulses (this signal is available at the SIGNAL BNC) may not be the same at the receiver for the same current settings, however. If not, reduce the current of the appropriate LEDs below 200 ma until they are balanced. This balance is not critical and does not directly affect the calibration, but it does affect the S / N.
4. References
l. Ting-i Wang, G. R. Ochs, S. F. Clifford, Appl. Opt. 68, 334 (1978).
2. Ochs, G. R., and Ting-i Wang (1978): Finite aperture optical scintillometer for profiling wind and Cn-squared, Appl. Opt. 17, no. 23, 3774-3778.
3. Ochs, G. R., and R. J. Hill (1982): A study of factors influencing the calibration of optical $C_{n}{ }^{2}$ meters, NOAA Tech. Memo. ERL WPL-106.
4. Ochs, G. R., D. Ş. Reynolds, and R. L. Zurawski (1985): Folded-path optical $C_{n}{ }^{2}$ instrument, NOAA Tech. Memo. ERL WPL-123.

APPENDIX A: Derivation of Calibration
Pulse-code modulation is used in this instrument rather than the continuous 7 kHz carrier used in earlier systems. After demodulation, however, the signal processing circuitry is nearly identical to that used in the earlier systems. From Ref 1 ,

$$
\begin{equation*}
\mathrm{c}_{\mathrm{n}}^{2}=\mathrm{K} \sigma_{\mathrm{x}}^{2} \mathrm{D}^{7 / 3} \mathrm{~L}^{-3} \tag{1}
\end{equation*}
$$

where $\circ^{2}{ }^{2}$ is the log-amplitude variance of the irradiance, D is the larger transmitter or receiver aperture diameter, and L is the path length. By definition,

$$
\sigma_{x}^{2}=<\ln a-<\ln a \gg^{2}
$$

where a is the light amplitude. We measure irradiance I. Since I is proportional to a^{2}, and $\ln a=2.3026$ log a, we can write

$$
\begin{equation*}
\sigma_{x}^{2}=\frac{2.3026^{2}}{4}<\log I-<\log I \gg^{2} \tag{2}
\end{equation*}
$$

Refer to Fig 5. In the log unit, 2 volts $=$ one decade and the bandpass unit subtracts off $<\log$ I> so that

$$
\begin{align*}
& \sigma_{x}^{2}=\frac{2.3026^{2}}{4}\left(\mathrm{~V}_{3} / 2\right)^{2} \\
& \sigma_{x}^{2}=0.3314 \mathrm{~V}_{3}^{2} \tag{3}
\end{align*}
$$

Combining (1) and (3),

$$
\begin{equation*}
\mathrm{c}_{\mathrm{n}}^{2}=0.3314 \mathrm{~K} \mathrm{D}^{7 / 3} \mathrm{~L}^{-3} \mathrm{~V}_{3}^{2} \tag{4}
\end{equation*}
$$

Decide on the following instrument calibration

$$
\begin{equation*}
c_{n}^{2}=10^{-12} v_{4}^{2} \tag{5}
\end{equation*}
$$

Determine gain G as a function of path length L. From the circuit

$$
\begin{equation*}
V_{4}=G V_{3} \tag{6}
\end{equation*}
$$

Figure 5. Simplified block diagram.

Combining (4), (5) and (6), to eliminate $C_{n}{ }^{2}, V_{3}$ and V_{4},

$$
\begin{equation*}
\mathrm{G}=5.757 * 10^{5} \mathrm{~K}^{1 / 2} \mathrm{D}^{7 / 6} \mathrm{~L}^{-3 / 2} \tag{7}
\end{equation*}
$$

Decide on the following log output calibration $\left(\mathrm{V}_{5}\right)$:

$$
\begin{equation*}
c_{n}^{2}=10^{\left(V_{5}-14\right)} \tag{8}
\end{equation*}
$$

Combining (5) and (8)

$$
\begin{equation*}
\mathrm{V}_{5}=2+2 \log \mathrm{~V}_{4} \tag{9}
\end{equation*}
$$

Thus the log unit should be set so that
and

$$
v_{5}=0 \text { when } v_{4}=1
$$

$$
V_{5}=2 \text { when } V_{4}=1 \text { (i.e., } 2 \text { volts/decade) }
$$

To determine the RMS voltage to be used to check the circuit gain, set $\mathrm{V}_{4}=1$ volt ($\mathrm{V}_{5}=2$ volts). Then from (7)

$$
\begin{equation*}
G=V_{4} / V_{3}=1 / V_{3}=5.757 \mathrm{~K}^{1 / 2} \mathrm{D}^{7 / 6} \mathrm{~L}^{-3 / 2} \tag{10}
\end{equation*}
$$

Now calculate gain G as a function of pot position P. From the circuit

$$
G=2 \times 2.62(100000-R) /(4700+R)
$$

Since

$$
\begin{gather*}
R=100 P \\
P=(5240-47 G) /(G+5.24) \tag{11}
\end{gather*}
$$

where P is the digital pot setting. From (7) and (1l) we can now calculate P as a function of K, D and L.
K depends upon the transmitter-receiver aperture geometry. We define K in (1) for D, the largest aperture in the system. Three configurations are used. One uses a $14.6-\mathrm{cm}$ dia transmitter and receiver (output B). A second uses the difference of two $4.38-\mathrm{cm}$ dia transmitter apertures spaced 6.7 cm on centers and one 14.6cm dia receiver (output A). A third path uses one $14.6-\mathrm{cm}$ dia transmitter and the difference of two $4.38-\mathrm{cm}$ dia receivers spaced 6.7 cm on centers (output C). From Ref 1 , one can calculate $K=4.474$ for output B, and $K=0.924$ for outputs A and C. From (7) and (ll), knowing D and K, we can calculate P as a function of path length L.

For $K=4.474, \quad D=.146 \mathrm{~m}$ (output B),

$$
\begin{equation*}
P=\left(5240-6.068 * 10^{6} \mathrm{~L}^{-3 / 2}\right) /\left(1.291 * 10^{5} \mathrm{~L}^{-3 / 2}+5.24\right) \tag{12}
\end{equation*}
$$

For $K=0.924, \quad D=.146 \mathrm{~m}$ (outputs A and C),

$$
\begin{equation*}
\mathrm{P}=\left(5240-2.756 * 10^{6} \mathrm{~L}^{-3 / 2}\right) /\left(5.863 * 10^{4} \mathrm{~L}^{-3 / 2}+5.24\right) \tag{13}
\end{equation*}
$$

A tabulation of P for L from 200 to 1000 m appears in Table 1.

Derivation of Calibration Signal and Instrument Output Relationship

The calibrator generates a string of three pulses with the same timing as the sum of the three transmitter pulses normally received by each detector. These pulses are amplitude modulated by a 10 Hz square wave of adjustable amplitude. This calibration signal is processed in the circuit as follows. When switched into the receiver, the pulse train is decoded and demodulated, the logarithm is taken with 1 decade $=2$ volts, and the mean is removed $\left(\mathrm{V}_{3}\right)$. Then in terms of the maximum to minimum square wave voltage ratio $(\mathrm{a} / \mathrm{b})$, the root mean square output voltage V_{3} is then (see Fig. 6)

$$
\begin{equation*}
V_{3}=\left[(\log (a / b))^{2}\right]^{l / 2} \tag{14}
\end{equation*}
$$

Fig. 6 Derivation of calibrator signal.
From (14), (9), (10) and (11) we can obtain the output voltage V_{5} as a function of a / b and P.

$$
\begin{equation*}
V_{5}=2+2 \log [(5240-5.24 P)(\log (a / b)) /(P+47)] \tag{15}
\end{equation*}
$$

If $a / b=2$, as set up in the calibration procedure in Appendix A, and P is set to 594 , then $V_{5}=2.0$ volts.

Saturation Criteria
The limits imposed by the saturation of scintillation have not been calculated for unequal aperture diameters from the most recent theory; however for equal diameters, the limiting expression is 3,4

$$
\begin{equation*}
L<0.54 D^{5 / 8} \quad 1 / 8\left(C_{n}^{2}\right)^{-3 / 8} \tag{16}
\end{equation*}
$$

Where L is the maximum path length for a given $C_{n}{ }^{2}, \lambda=0.94 \mu \mathrm{~m}$ is the optical wavelength, and D is the aperture diameter. This geometry has a peak spatial wavelength response slightly larger than D. For the more complex three aperture system used for outputs A and C in the profiler, the mean response is to irregularities of spatial wavelength 8.9 cm . It seems reasonable to assign this value to D. Then (16) becomes

$$
\begin{equation*}
L<0.0210\left(c_{n}^{2}\right)^{-3 / 8} \tag{17}
\end{equation*}
$$

For $C_{n}^{2}=1 * 10^{-12}, \quad L<664 \mathrm{M}$.
Experimental measurements verify that this is a reasonable estimate.

APPENDIX B: Circuit Diagrams, Alignment, and Layout Transmitter

Timing diagram 16
Block diagram 17
Selector switch/wiring 18
Three pulse driver board 19
Driver board circuit 20
Battery power supply 21
Alignment 22
Receiver
Connector pinouts 24
Wire diagram (inside) 25
Panel switches 26
Calibration board timing diagram 27
Calibration board layout 28
Calibration board circuit 29
Preamplifier circuit 30
Automatic gain control layout 31
Automatic gain control circuit 32
Baseline/sync/signal strength board layout 33
Baseline/sync/signal strength circuit 34
RMS/log board timing 35
RMS/log board layout 36
RMS/log circuit 37
$\mathrm{C}_{\mathrm{n}}{ }^{2}$ board layout 38
$c_{n}{ }^{2}$ circuit 39
Battery power supply board layout 40
Battery power supply circuit 41
Chip printout 42
Receiver calibration procedure 43

Timing Diagram

Driver Board Circuit

LM317T $V_{0}=1.25\left(1+R_{2} / R_{1}\right)$ $\mathrm{I}_{\text {our }}=1.5 \mathrm{~A}$

1) Set power supply to 10.0 volts DC, with it disconnected. Reconnect.
2) Adjust timing signals in accordance with timing diagram. Start with the clock pulse first with diodes disconnected.

Note: The optical alignment procedure described below requires the use of a $20-\mathrm{cm}$ diameter collimator. The collimator has an LED (0.94 um wavelength) at its focus. In addition to its normal use as an emitter, an LED will function as a narrow-band $0.94 \mu \mathrm{~m}$ wavelength detector and is used this way for some of the operations. While this description is specifically for the transmitter, a similar procedure is used for the receiver optical alignment.
3) Remove the 5 cm transmitter from the unit. Set it on a transit mount and use a $C_{n}{ }^{2}$ driver box to power the transmitter. Connect an oscilloscope to the collimator detector output and move the transit mount until a signal is displayed on the scope. Adjust the focus for maximum signal and only one peak. (If there is a double peak it is out of focus.) Do the same for the second transmitter.

Note: Make sure the diode holder is flat on both ends.
4) Reinstall the $5-\mathrm{cm}$ transmitters. Mount the transmitter in front of the collimator on the transit mount. Connect the external sync probe to TPI on the transmitter driver board.
5) Turn on the transmitter and adjust current \#l to 25-50 ma and \#2 and \#3 to 200 ma. Move the transmitter with the transit mount until one or more of the pulses are displayed on the scope.
6) Adjust the $5-\mathrm{cm}$ adjust plates until both $5-\mathrm{cm}$ signals are displayed. Continue to adjust them so when the transmitter is moved up, down and sideways the signals both peak at the same time. Tighten all screws and check the alignment again.
7) Once the $5-\mathrm{cm}$ units are aligned, adjust the $15-\mathrm{cm}$ system until the signal is displayed on the scope.
8) Adjust the focus until you get maximum signal and only one peak when moved in and out of view. Double peaks indicate an out of focus condition.
9) Adjust the position of the diode until the signal peaks at the same time as the $5-\mathrm{cm}$ signals. The $15-\mathrm{cm}$ will rise and fall
faster than the $5-\mathrm{cm}$ units.

Note: The alignment of the $5-\mathrm{cm}$ transmitters may have to be changed to get the 15 cm aligned to them.
10) Once all three signals peak at the same time, tighten all screws and check for proper alignment again.
11) Now align the rifle scope. Move the collimator up so the 15 cm signal is displayed and the rifle scope can see into the collimator. Place a light in front of the collimator so you can see the receiver diode when looking through the telescope. Adjust the transit mount until the maximum signal is displayed. Then adjust the riflescope crosshairs to line up on to the diode, and recheck the alignment.

FRONT VIEW

Calibration Test Switch
 4 PDT (Momen, -off-Momen.)

Calibrate/Run Switch
\qquad
preamp signais $1,2+3$
shielded cables

Calibration Board Timing Diagram

TOP VIEW OF BOARD

* Note: There are 3 pots mounted on the back of the board. These pots adjust the amplitude of the calibration puises and are ondered $R_{1} 1, R_{1}, R_{1} 3$ (top to bottom.

TOP VIEW of BOARD

TOP VIEW of BOARD

RMS/Log Board Timing

TOP VIEW OF BOARD

$C_{n}{ }^{2}$ Board Layout

Battery Power Supply Circuit

Chip Printout

Receiver calibration procedure

Place the RUN/CAL switch in the CAL position.
The CAL TEST switch must be held in either position (up or down) for the duration of the calibration procedure.

Refer to board layouts for location of pots and test points (TP). Turn power off for removal or insertion of cards.

Calibration board
Refer to the calibration timing diagram and board layout.

1) Install the extender card.
2) Place the modulation ON/OFF switch in the ON position (The switch is on the calibration board). Note: For steps 3)-6) and $8)$, trigger the scope off of TP CLKl.
3) TP CLKl (white).
a) Adjust clock 1 pot to obtain a $900 \mu \mathrm{p}$ pulse.
4) TPI (blue).
a) Adjust l for a 200 us pulse.
5) TP2 (orange).
a) Adjust 3 for a 200μ pulse.
b) Adjust G3 so the pulse begins 400μ s after the CLKl pulse.
6) TP3 (green).
a) Adjust 3 for a 200 us pulse.
b) Adjust $G 3$ so the pulse begins $800 \mu \mathrm{~s}$ after the CLKl pulse.
7) TP CLK2 (white) (trigger scope here also).
a) Adjust clock 2 for a 50 ms pulse.
8) TP output (yellow).
a) Adjust pulse gain pots $\left(R_{1} 1, R_{1} 2\right.$ and $R_{1} 3$ on rear of board) to obtain a l. 20 volt peak pulse.
b) Adjust the modulation amplitude pots $\left(R_{2} 1, R_{2} 2, R_{2}{ }^{3}\right.$ to obtain a modulated pulse of 0.60 volt (l/2 of peak pulse).
9) Remove the extender card.

AGC board
There are no adjustments possible on this board. The three AGC circuits should be tested, however, to assure proper operation.
l) TP's Inl,In2 and In3.
a) The three inputs should be identical to the output of the calibrator board.
2) TP's lstl, lst2 and lst3.
a) The signal at these points should be similar to the input but will be inverted with an amplitude modification and slight DC offset.
3) TP's FBl, FB2 and FB3.
a) This is a feedback signal and should be a negative DC signal between -0.1 and -0.2 volts.
4) TP's AGCl, AGC2 and AGC3.
a) These are the modified input signals with the gain adjusted.
b) Place the RUN/CAL switch in the RUN position for several seconds and then switch back to CAL. The signal should start very large and gradually (5-10 sec) reduce to its steady state amplitude. (In the RUN position, the AGC receives no input signal and is attempting to increase the gain to produce a valid signal. Switching back to the CAL signal shows the increased gain and automatic adjustment back to steady state.)

Baseline/sync/signal strength board

1) TP's R_{1}, R_{22} and R_{33}.
a) These signals should be similar to the AGC outputs (AGC1, AGC2, and AGC3 respectively) but the base of of each signal should be at zero volts. The base should be steady at zero and not bounce up and down.
2) TP sync (blue) (Refer to RMS/log timing diagram.)
a) The sync signal should be 3 positive pulses, each approximately $200 \mu \mathrm{~s}$ in duration separated by $800 \mu \mathrm{~s}$. Sets of pulses are separated by approximately $800 \mu \mathrm{~s}$.
3) Place the RUN/CAL switch in the RUN position and wait several seconds for the needle to stabilize. Adjust the signal strength pot so the meter reads zero. Switch back to the CAL position. The meter should now read its maximum value.

RMS/log board

Refer to RMS/log timing diagram and board layout.

1) TP's G_{C} through T_{3} (trigger scope off of sync pulse).
a) G_{C} and G_{O} : Adjust pots to match timing diagram.
b) $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and T_{3} : Adjust $\mathrm{G}_{1}, \mathrm{G}_{2}$ and G_{3} to move the pulse to the proper time with respect to the first sync pulse. Adjust T_{1}, T_{2} and T_{3} for the proper
C) To test for proper adjustment, check pulses T_{1}, T_{2} and T_{3} against the sync signal. Each of these pulses should occur near the center of its corresponding sync pulse.
2) TP's $T_{1} R_{1}$ through $Y_{3} R_{3}$
a) These signals should be approximately 0.4 volt peak to peak square waves with a period of 100 ms and a -0.5 volt offset.
3) Calibration of $A D-536$'s.
a) Turn power off and remove RMS/log board.
b) Remove the five 398 IC's.
c) Install extender card and RMS/log board.
d) Turn off CAL test switch (place in center position).
e) Turn power on.
f) Apply a +0.10 volt $D C$ input signal to $T P T_{1} R_{1}$ (pin 1 of the AD-536). Using a voltmeter, observe the voltage at pin 1 of the BO and CO TLO74. Adjust the 50 kilohm pot for ADl to obtain a reading of 0.0 volts.
g) Change the input signal to +1.00 volt and adjust the 200 ohm ADl pot for a +2.00 volt output.
h) Repeat steps f) and g) for the remaining four AD536 circuits using the following TP's and TL074 pin numbers for input and output.

AD-536	Input TP	TL074	Pin Number
AD1	$\mathrm{T}_{1} \mathrm{R}_{1}$	B0 \& C0	1
AD2	$\mathrm{T}_{1} \mathrm{R}_{2}$	B0 \& C0	7
AD3	$\mathrm{T}_{1} \mathrm{R}_{3}$	B0 \& C0	14
AD4	$\mathrm{T}_{2} \mathrm{R}_{3}$	A0	1
AD5	$\mathrm{T}_{3} \mathrm{R}_{3}$	AO	7

i) Remove the extender card.
j) Replace the 398's and re-install the RMS/log card.
k) Return the CAL test switch to the ON position.
$C_{n}{ }^{2}$ boards (3)

1) Note the readings on the path length calibration digital pots (mounted on rear panel). Then set all three pots to 594.
2) Blue TP's.
a) The signals should be 0.6 volt peak-to-peak with a period of 100 ms and zero offset.
b) Check C_{n}^{2} boards A, B and C.
3) Orange $T P$
a) The signals should be approximately 1.04 volts peak-to-peak, of period 100 ms and zero offset.
b) Check boards A, B and C.
4) Green $T P$
a) The signals are approximately 2.1 volts peak-to-peak of period 100 ms with zero offset.
b) Check boards A, B and C.
5) Calibration of $\mathrm{AD}-536$'s
a) Turn power off and remove a $c_{n}{ }^{2}$ board.
b) Remove the 4250 opamps 1 - 5 .
c) Install the $\mathrm{c}_{n}{ }^{2}$ card and turn power on.
d) Connect a voltmeter to the corresponding C_{n}^{2} board.
e) Apply $a+0.10$ volt signal to the green $T P^{n}$ (pin 1 of the AD-536). Adjust the 1 megohm offset pot for a 0.00 volt output.
f) Change the input signal to +1.00 volt and adjust the 500 ohm gain pot for a +2.00 volt output.
g) Turn power off and replace 4250 opamps 1 - 5.
h) Repeat the procedure for each card.

Post calibration tests

1) With all cards in place, modulation on, in CAL position with CAL test switch first up and then down, all $3 \mathrm{C}_{\mathrm{n}}{ }^{2}$ BNC readings should be +2.00 volts +-0.05 .
2) The three BNC readings should remain approximately the same when the CAL test switch is placed in the opposite position.
3) Turn the modulation off. $\frac{I}{2} n$ CAL position with CAL test either up or down, the $c_{n}{ }^{\frac{1}{2}}$ readings will gradually drop to -2.3 volts or less.
4) Return the path length calibration pots to the original settings.

Battery Supply Board

1) Important: Unplug all cards except battery board.
2) Using a 12 volt automotive battery or a power supply which supplies 12 to 30 volts DC at 2 or more amps, plug the supply into the battery banana plugs on the rear panel.
3) Switch the AC/BATTERY switch to BATTERY.
4) Place a voltmeter across the red (+5 volt) and orange (-5 volt) test points. Adjust the span pot for 10.0 volts.
5) Adjust the balance pot for a +5.0 volt reading across the red (+5 volt) and black (ground) TP's.
6) Check the voltage across the orange (-5 volt) and black (ground) TP's. It should read -5.0 volts. If not, then repeat steps 4), 5) and 6) until the outputs are +5.0 volts and -5.0 volts.
7) Unplug a battery lead and install all cards. Place the RUN/CAL switch in CAL position and the CAL TEST switch in either position. Reconnect the battery.
8) Repeat steps 4), 5) and 6) until proper voltage is achieved.
